

Progetto finanziato con lo Sviluppo Rurale Piemonte 2023 – 2027 Intervento SRG10 Promozione dei prodotti di qualità regione.piemonte.it/svilupporurale

Si invita al consumo responsabile delle bevande alcoliche

PSP 23-27 Piemonte, Intervento SRG10, nº domanda 20231092014

VERDUNO, 9 SETTEMBRE 2025

30 anni di Verduno Pelaverga Doc

Una piccola Doc nei suoi trent'anni di denominazione di origine

Progetto finanziato con lo Sviluppo Rurale Piemonte 2023 – 2027 Intervento SRG10 Promozione dei prodotti di qualità regione.piemonte.it/svilupporurale

Si invita al consumo responsabile delle bevande alcoliche

PSP 23-27 Piemonte, Intervento SRG10, nº domanda 20231092014

Caratterizzazione aromatica e sensoriale del Verduno Pelaverga

Alcuni risultati del progetto AROSE - CREA-VE

Centro di ricerca Viticoltura ed Enologia - Sede di Asti Maurizio Petrozziello 9/9/25

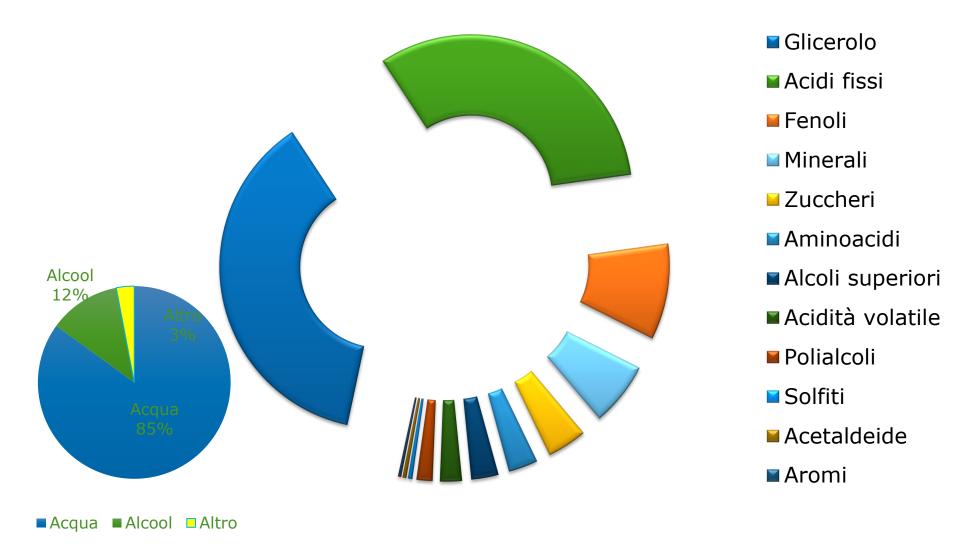
È il profumo, il protagonista del vino

Il profumo ha una forza di persuasione più convincente delle parole, dell'apparenza, del sentimento e della volonta'. Non si può rifiutare la forza di persuasione del profumo, essa penetra in noi come l'aria che respiriamo penetra nei nostri polmoni, ci riempie, ci domina totalmente, non c'e' modo di opporvisi.

Patrick Süskind

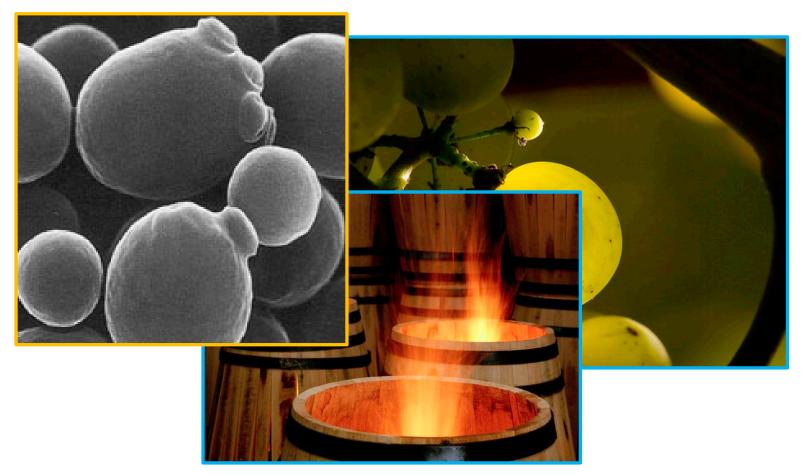
- La ragione è lo stretto legame anatomico che esiste tra le strutture olfattive e il sistema limbico.
- Il sistema limbico è una serie di strutture cerebrali che includono l'ippocampo, l'amigdala, i nuclei talamici anteriori e la corteccia limbica che supportano svariate funzioni psichiche come emotività, comportamento, memoria a lungo termine, e olfatto.

Gli aromi del vino

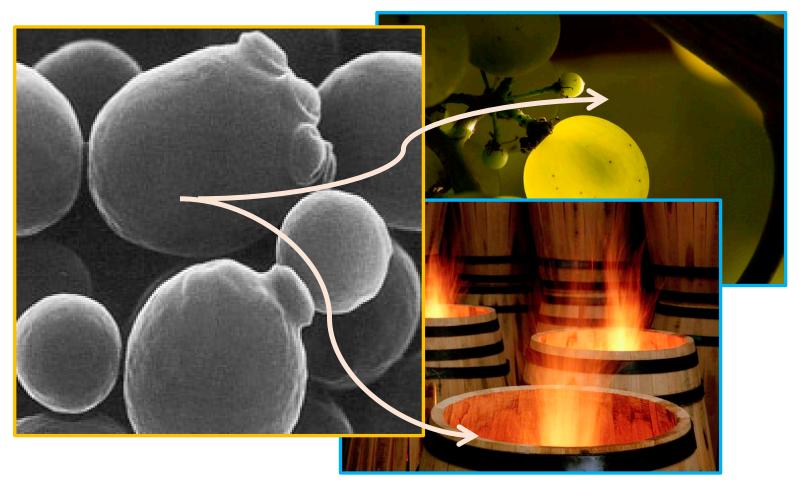


3 anni

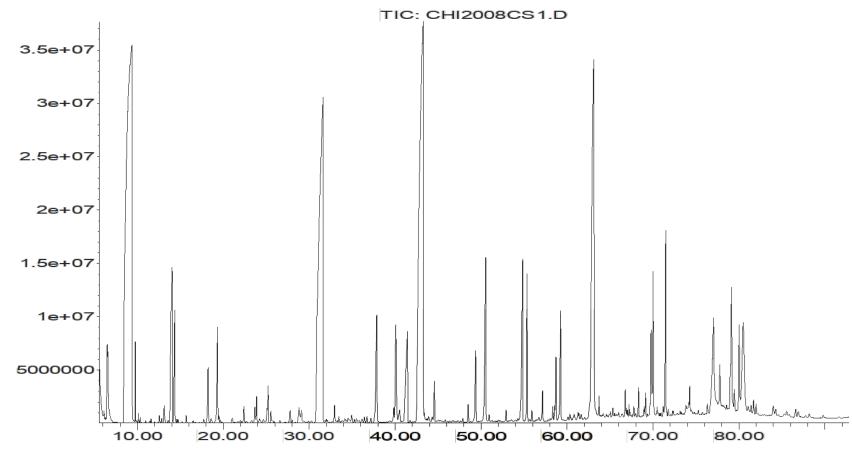
La composizione del vino



Gli aromi nel vino



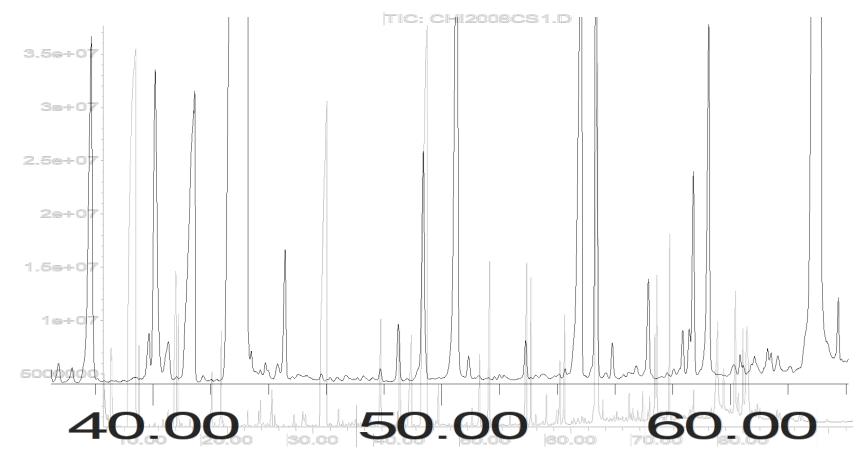
Gli aromi nel vino



Complessivamente....

L'aroma del vino è generato da centinaia di sostanze volatili presenti anche solo in tracce.

Abundance



3 anni

Complessivamente....

L'aroma del vino è generato da centinaia di sostanze volatili presenti anche solo in tracce.

Abundance

Composti d'impatto o aromi chiave

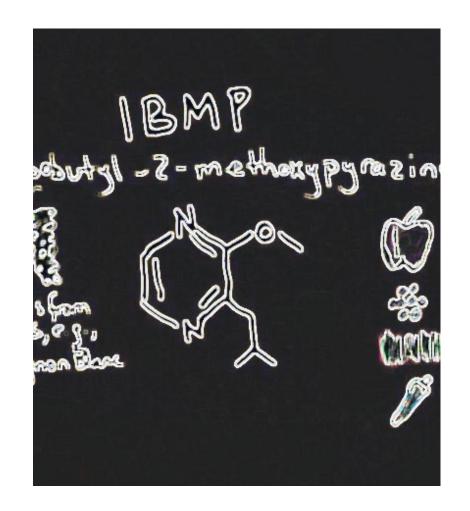
- Quali molecole sono veramente importanti nel definire il profilo aromatico e la piacevolezza del vino?
- Quali caratteristiche devono avere?

Beh... devono essere piacevoli....

- ✓In effetti non tutte le sostanze aromatiche presenti nel vino sono piacevoli.
- Molte sono all'origine di difetti olfattivi anche molto gravi...

Devono essere d'impatto

impatto odoroso devono avere un profumo ben riconoscibile, devono caratterizzare il vino.



Devono avere una bassa soglia di percezione

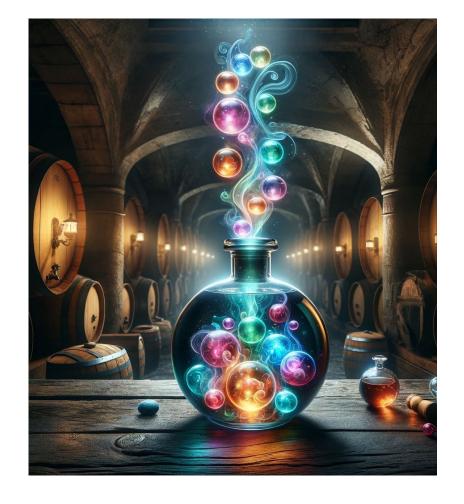
- La minima concentrazione di una data sostanza odorosa a partire dalla quale è possibile riconoscere la presenza di un profumo senza, tuttavia, necessariamente essere capaci di identificarlo.
- Certi composti hanno soglie di percezione bassissime dell'ordine del ng/L (0,00000001 g/L). Che equivale a dire 1 goccia in 500 hL!!

...ma non basta

Solo le molecole che hanno una concentrazione nel vino superiore alla soglia di percezione, possono contribuire in qualche modo al profumo del vino.

Valore di attività odorosa o l'attività odorosa è un numero che misura il "ruolo" delle molecole aromatiche presenti in soluzione:

> Concentrazione OAV= Soglia di percezione



- 1. L'etanolo e gli altri composti volatili maggiori prodotti dalla fermentazione costituiscono una sorta di "tampone aromatico", la cui integrità è difficilmente alterabile. Composti da 22 diverse molecole
- 2. Ubiquitari in tutti i vini e nella maggior parte delle bevande fermentate
- 3. Costituiscono una base «vinosa» nel quale però le sfumature individuali di aroma non sono distinguibili.

Il buffer d'aroma

Come rompere il buffer d'aroma?

Tale tampone può essere «rotto» soltanto da specifiche molecole, oppure da particolari insiemi di molecole che operano in modo sinergico sul nostro sistema olfattivo. Composti d'impatto Famiglie aromatiche d'impatto

Moscato

I composti chiave d'aroma

Gewurtztraminer

Amarone

Sauvignon blanc

Chardonnay

Linalolo, c-rose oxide e β**-damascenone**

4-Methyl-4-mercantonantanana 3mercaptohexa Vini affinati in barrique

- Isoamil acetato
- Whiskylactone
- Diacetile Vernaccia di Oristano
- Sotolone

cetaldeide

Rossi lungamente affinanati

- Furfuriltiolo e benzilmercaptano
- Rotundone

Bianchi fermentati in barrique

Syrah, Pelaverga

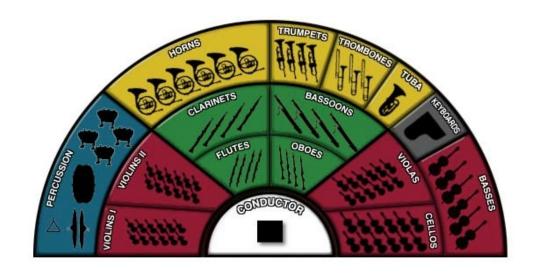
Le famiglie aromatiche d'impatto

che apportano

10 differenti nouances

al vino

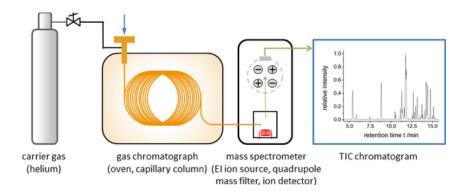
- **Composti correlati alla vaniglia**: vanillina, etile vanillato, metile vanillato, acetovanillone, siringaldeide.
- Monoterpeni: linalolo, geraniolo, nerolo dalle note di rosa e agrumi
- Composti con note di caramello: furaneolo, maltolo, omofuraneolo, sotolone.
- Fenoli volatili dalle note affumicate o speziate: quaiacele, quando isoeugenolo, 2,6-dimetossifenolo, 4-allili Famiglie di composti
- Aromi di ciliegia: Etil cinnamato ed etil c
- Isoaldeidi: isobutirraldeide, 2-metilpent "sinergicamente almeno
- Aldeidi alifatiche: ottanale, nonanale, de
- Esteri etilici di acidi grassi.
- Acetati di alcoli superiori dalle note di fi
- Esteri etilici di acidi grassi ramificati dalle note di piccola frutta rossa.



L'armonia degli aromi.

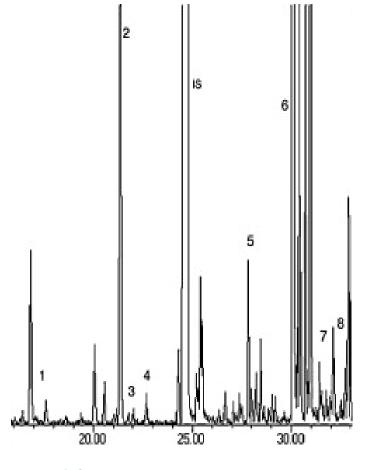
Possiamo immaginare il vino come una grande orchestra, in cui le note suonate dai solisti, o se vogliamo l'aria principale della composizione, può essere valorizzata, o coperta dalla ritmica o dalle melodie di accompagnamento.

La ricerca sul Pelaverga al CREA Centro di Ricerca Viticoltura ed enologia di Asti



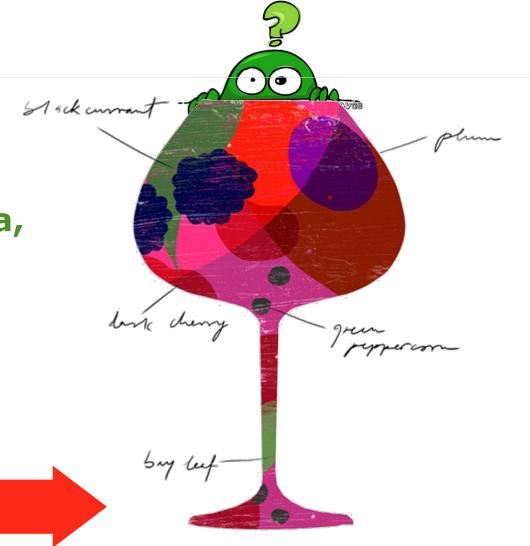
Negli ultimi 50 anni la conoscenza della composizione della frazione aromatica degli alimenti, delle bevande e del vino, partendo dalle materie prime fino ai prodotti di trasformazione, è enormemente migliorata grazie all'introduzione di potenti e specifiche tecniche analitiche

Da dove siamo partiti

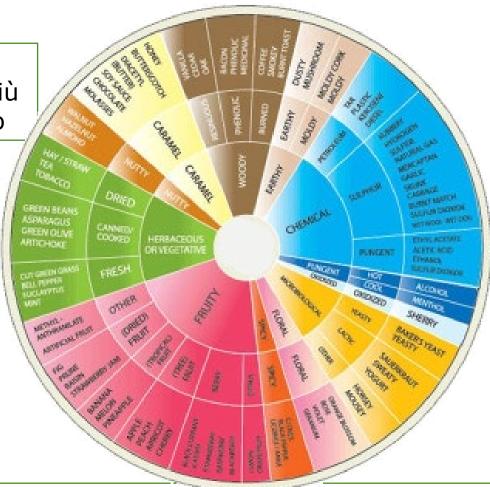


L'analisi degli aromi

Complessivamente, tuttavia, vagliando queste ricerche, e più in generale la bibliografia internazionale nel campo della ricerca enologica, emerge un approccio prevalentemente "chemically oriented" finalizzato più alla descrizione che alla comprensione del comprensione del reale rapporto tra composizione e percezione aromatica dei vini.



Quindi, nonostante i numerosi studi e le conoscenze acquisite, ancora oggi risulta difficile, nota la composizione chimica, definire la reale qualità olfattiva del vino.



La ruota degli aromi di Ann Noble

Caratterizzare dal punto di vista aromatico alcuni dei più importanti vini del territorio

Individuare gli "aromi chiave" di ciascun prodotto permette di orientare le pratiche agronomiche e la tecnologia di cantina per migliorarne la qualità ai fini della sua valorizzazione

Il progetto AROSE

Caratterizzazione aromatica e sensoriale del vino Verduno Pelaverga

Analizzare il profilo aromatico del Verduno Pelaverga mediante un Approccio polistrumentale: sensoriale, olfattometrico, GC-MS

Effetto di alcune pratiche enologiche sul profile sensoriale del Pelaverga

Sviluppo di un metodo per la misura del rotundone (pepe nero)

Parte prima:

L'analisi sensoriale

Panel di assaggiatori addestrati (12 esperti) per

La scelta dei descrittori significativi del Verduno Pelaverga

Valutazione quantitativa per l'elaborazione del profilo sensoriale del Verduno Pelaverga

Gli assaggi sono stati realizzati nel laboratorio di analisi sensoriale (norma ISO 8589). Le analisi sono state condotte impiegando bicchieri trasparenti (norma ISO 3591).

sensoriale del **CREA-VE Asti**

realizzata mediante FIZZ (Biosystems, Couternon, France)

 $65 \text{ mm} \pm 5$

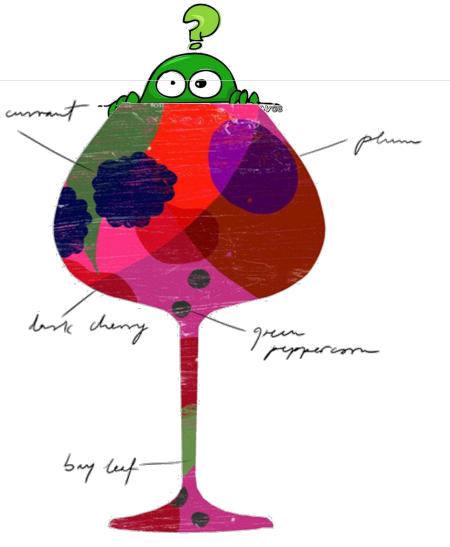
Analisi GC-MS

5 vini Pelaverga analizzati (annate 2015-2017)

Composti di origine fermentativa (esteri, alcoli superiori)

Composti varietali (terpeni, norisoprenoidi) e fenolici (quaiacolo, vanillina)

Differenze legate a vinificazione e condizioni climatiche



Il profilo sensoriale dei vini

• PRIMO INCONTRO: INDIVIDUAZIONE DEI DESCRITTORI DEL COLORE E OLFATTIVI

• SCELTA DEI DESCRITTORI SULLA BASE DELLE FREQUENZE

• SECONDO E TERZO INCONTRO: VALUTAZIONE QUANTITATIVA DEI DESCRITTORI PER LA DEFINZIONE DEL PROFILO SENSORIALE in DOPPIO

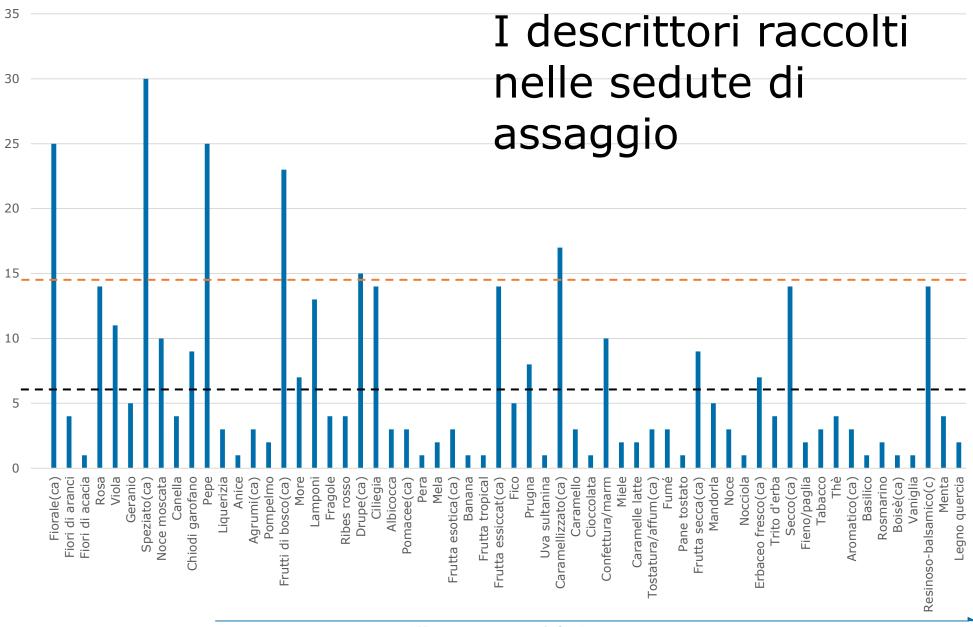
La ruota degli aromi di Ann Noble

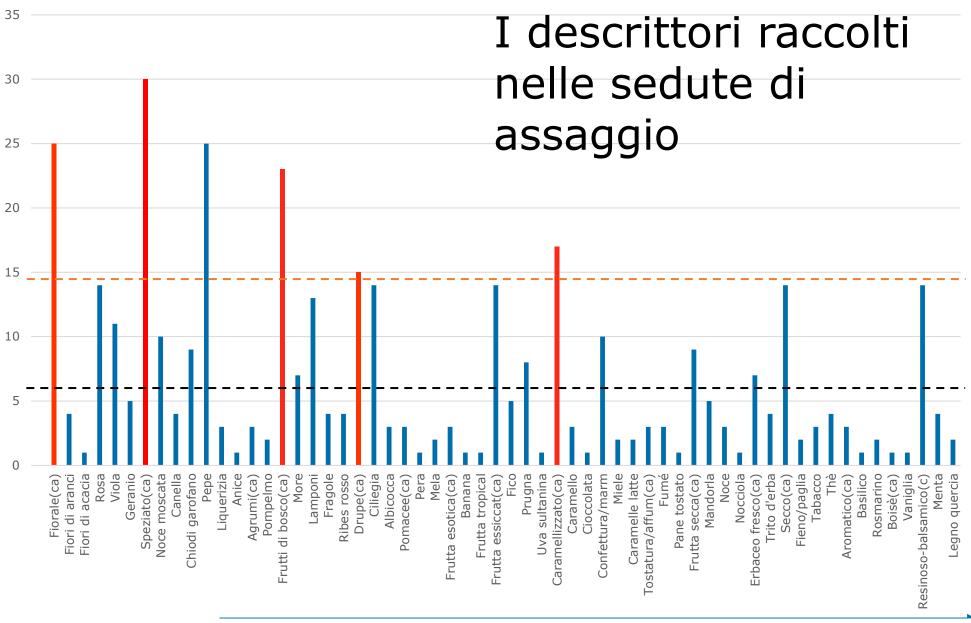
Classificazione degli odori

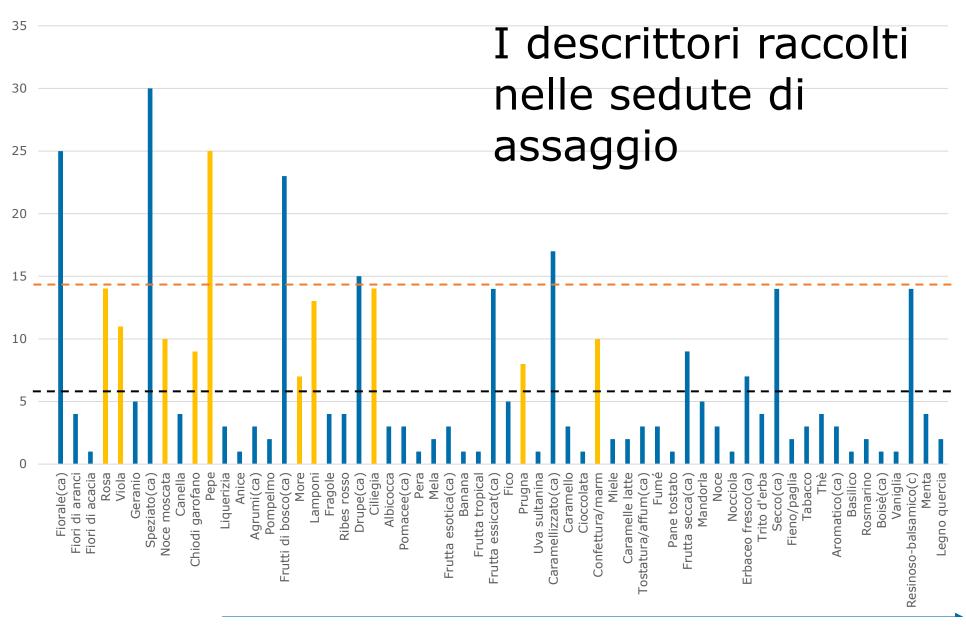
Esistono più di 10.000 odori diversi, è difficile classificarli per la complessità

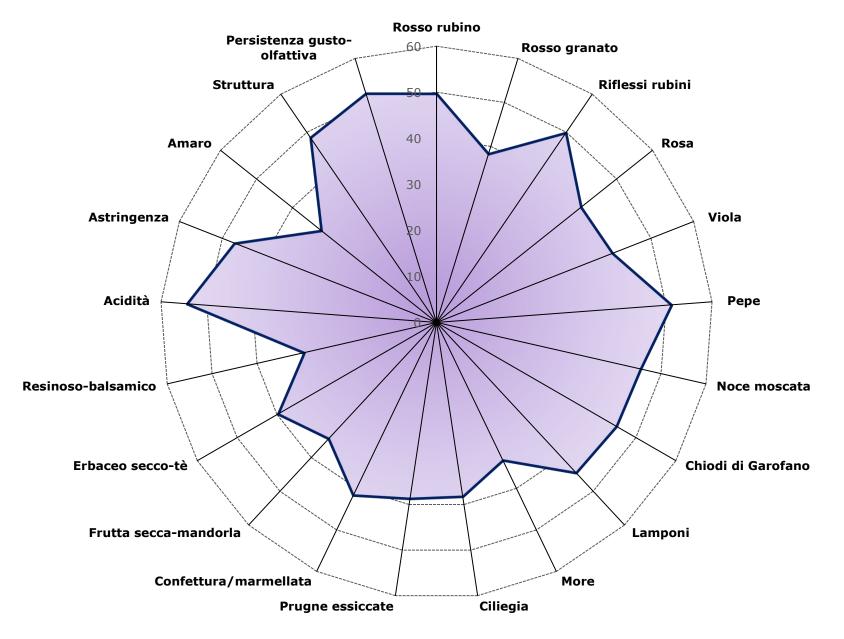
Non esistono CLASSIFICAZIONI degli odori anche se possono essere catalogati per similitudine, col nome di un oggetto, di una sostanza che ha un certo odore.

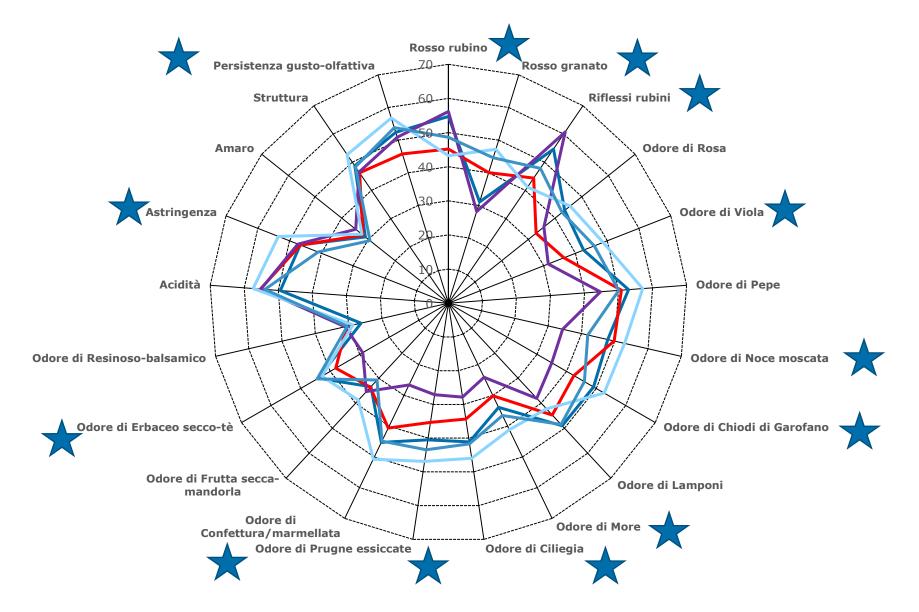
Esistono diverse classificazioni (es la ruota degli odori dei vini di A.Noble) con indicazioni per standard di ciascun odore

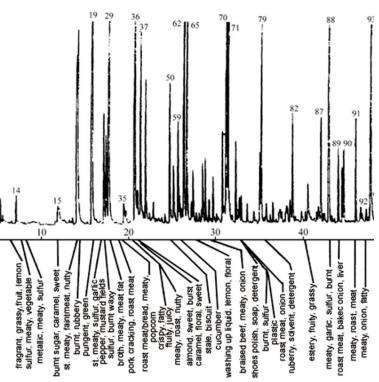


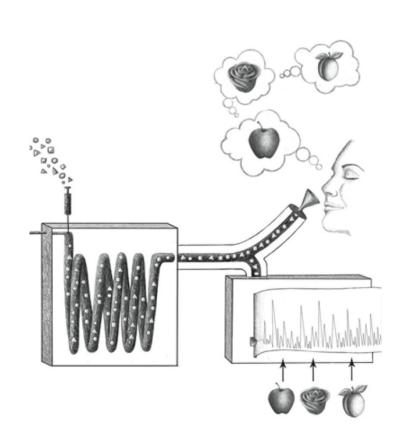










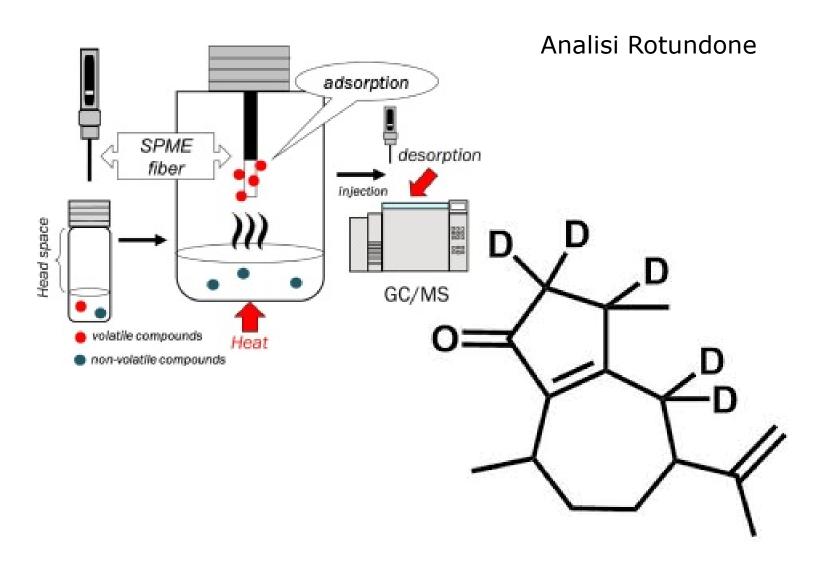


Parte due: L'olfattometria

gure 1. Gas Chromatogram of headspace volatiles collected from 5'-IMP/cysteine model system lowing a summary of the aromas detected in the polar column effluent. Peak numbers relate able 1.

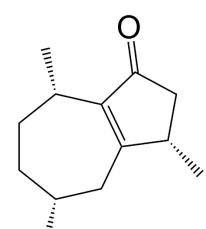
Il nostro olfattometro

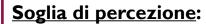
		Intensità media (%)			
Acido isovalerico	🙆 Formaggio, 💝 sudore	95,6			
2-feniletanolo	🌻 Rosa, 🌻 rosa appassita	88,7			
Alcol isoamilico	🔓 Solvente, 🙆 Formaggio, 🥟 Vegetale	85,8			
β-damascenone	🌻 Rosa, 🎡 Floreale, 🏷 Cotogna	82,2			
Etil esanoato	🖔 Ananas, 🥘 Frutti rossi, 🧬 Caramelle	79,8			
Composto ignoto	Floreale, Tiglio	76,5			
Acetato di isoamile	🔈 Banana	74,7			
Rotundone	Pepe nero	72,3			
Sotolone	🍮 Caramello, 🤔 Liquirizia, 🥬 Fieno greco	71,4			
Diacetile	Burro	70,6			
Linalolo	🀌 Agrumi, 🌹 Rosa, 🎡 Floreale	68,3			
Etil-2-metilbutirrato	🐚 Frutti di bosco, 👚 Mirtillo	66,1			
Etil idrocinnamato	🎡 Floreal	61,1			
Etil ottanoato	Floreale, Saponoso	57,2			
o-cresolo	📏 Medicinale, 🛍 🋍 aceo, 👝 Cuoio	55,2			
Guaiacolo	🔥 Affumicato, 🕊 Speziato, 🛌 Cuoio,	55,1			
Etil butanoato	🍊 Toffee, 🌟 Caramello mou	51,6			
Acido butirrico	ሰ Formagg🗐 🧽 Burro rancido	50,7			



lo zigolo infestante (Cyperus Rotondus) 1967

- Il rotundone è un sesquiterpene scoperto per la prima volta nel 1967 in una pianta infestante, denominata zigolo infestante o "erba pepa" (Cyperus rotundus), con parti commestibili che trovano usi officinali, ed appartiene allo stesso genere del papiro
- è una specie presente in tutte le regioni d'Italia salvo che in Piemonte, Valle d'Aosta, Trentino-Alto Adige e Emilia-Romagna. Cresce, spesso come infestante, nei coltivi irrigati, ma è frequente anche negli incolti, nelle vigne, ai margini delle colture, presso canaletti lungo le vie, dal livello del mare a 600 m circa. I tuberi, di sapore amaro, sono commestibili da cotti.
- Il nome generico, già in uso presso gli antichi greci, è di etimologia incerta: forse deriva dall'isola di Cipro (Kypros); il nome specifico si riferisce alla forma dei tuberi.





Il rotundone si trova in numerose essenze come l'olio di **patchouli**, olio di **cipriolo** (Cyperus scariosus) È un importante componente dell'aroma di Agarwood (Oud) e dei grani di pepe bianco e nero.

Robin Clery e colleghi ne hanno descritto l'odore usando il GC-O come «legnoso e pepato»

Acqua

8 ng/L

Vino rosso

16 ng/L

Aroma caratteristico: Pungente, chiodi di garofano, speziato, affumicato

Un importante passo avanti nella nostra comprensione della nota «speziata» nelle uve e nel vino è venuto dall'identificazione nel 2008 di un sesquiterpene chiamato rotundone, scoperto come responsabile dell'aroma "pepato" in uva, vino, erbe e spezie (Wood, C. et al., 2008).

Mentre la maggior parte dei degustatori è sensibile al rotundone, circa il 20 -30% non rileva questo composto a concentrazioni di 4000 ng/L.

In quali vini?

Fino ad ora, è stato identificato in una vasta gamma di vitigni tra cui

- Pinot Nero, Durif, Mourvedre
- Riesling (Herderich et al. 2012)
- Duras (Geffroy et al., 2014)
- Gamay (Geffroy et al. 2016a)
- Malbec e Abouriou (Cullere et al., 2016)
- Pelaverga (Petrozziello et al., 2021)

Maturità.

Il Rotundone nei chicchi d'uva si accumula principalmente nella fase avanzata della maturazione e raggiunge una concentrazione relativamente stabile tra i 45-55 giorni dopo l'invaiatura. Nelle uve surmature il livello di rotundone tende a essere costante o diminuire leggermente.

Esposizione del grappolo.

La più alta concentrazione di rotundone si trova costantemente nella parte superiore e nei settori ombreggiati dei grappoli. La rimozione delle foglie all'invaiatura riduce drasticamente il contenuto di rotundone.

Vigore.

È correlato ad un maggiore contenuto di rotundone nelle uve.

Irrigazione

La disponibilità idrica pare aumenti la biosintesi di questo composto. Viti che subiscono un forte stress idrico producono uve con ridotte concentrazioni di rotundone

Temperatura.

Temperature del grappolo superiori a 25°C influiscono negativamente sulla concentrazione di rotundone. Da ricordare che mediamente la temperatura degli acini esposti al sole è circa 13° più elevata che in quelli non esposti

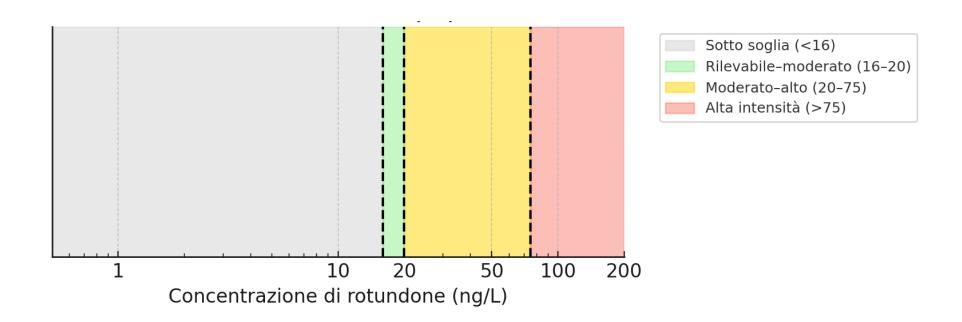
Dove si trova il rotundone nelle uve

✓ Il Rotundone si trova principalmente nell'esocarpo dell'uva (Siebert e Solomon 2011, Caputi et al., 2011), e la maggior parte viene estratto dalle bacche tra il 2 ° e il 5 ° giorno di fermentazione (Siebert e Solomon 2011).

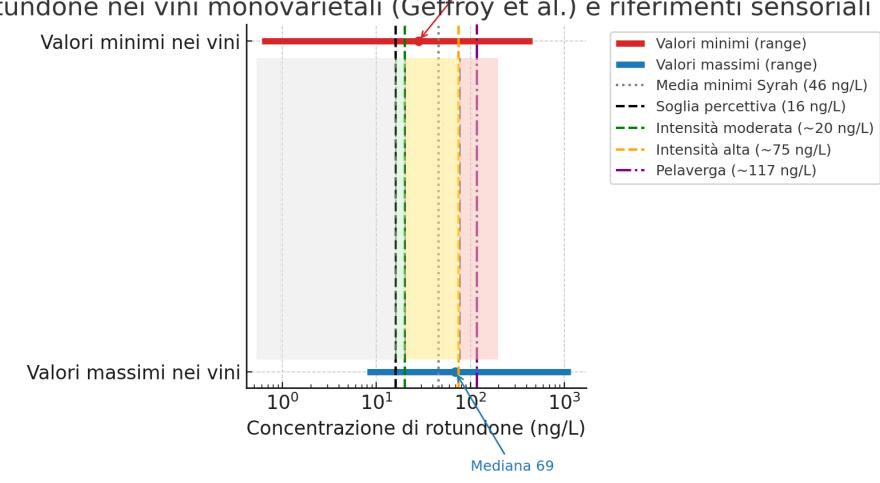
A fine fermentazione la quota estratta è di circa il 5-6%

La vinificazione e il rotundone

- ✓ Le tecniche di vinificazione e le variabili di fermentazione hanno un impatto sulla sua concentrazione nei vini finiti (Geffroy et al., 2017).
- Rispetto ad un vino macerazione tradizionale, i vini ottenuti da una vinificazione rosé che comportavano una rimozione preferenziale delle bucce, hanno portato ad una bassa concentrazione di rotundone.
- I'uso di enzimi maceranti o l'aumento della temperatura o il tempo di macerazione non hanno portato ad una maggiore concentrazione di rotundone.
- La nostra recente ricerca è stato associato l'uso dell'ossigeno a un piccolo aumento della concentrazione di rotundone nei vini Pelaverga.



Interpretazione sensoriale del rotundone



Rotundone nei vini monovarietali (Geffroy et al.) e riferimenti sensoriali

Divulgazione e impatto

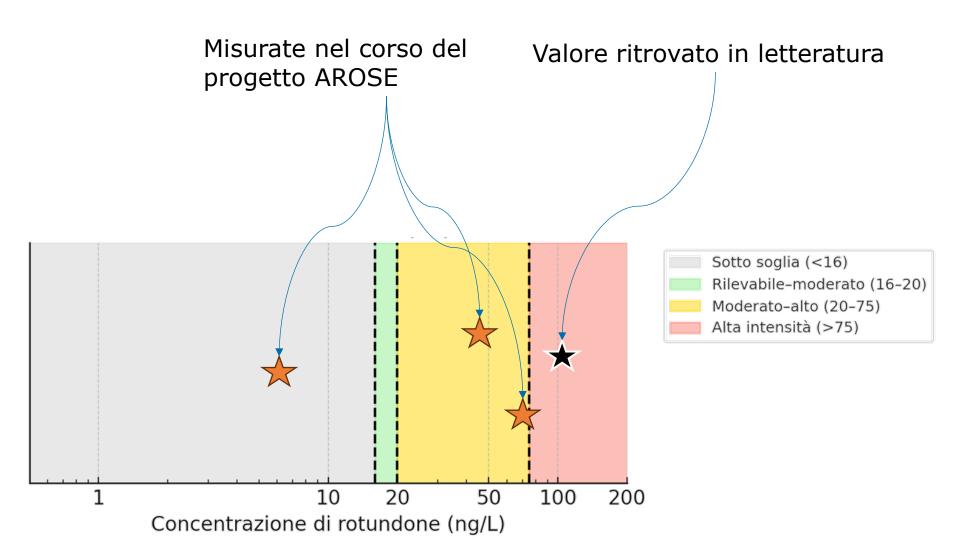
European Food Research and Technology (2021) 247:1645–1653 https://doi.org/10.1007/s00217-021-03735-9

ORIGINAL PAPER

Effect of some winemaking factors on rotundone levels of *Pelaverga di Verduno* wines

Maurizio Petrozziello¹ ⊕ · Laura Espada-Rodríguez² · Federica Bonello¹ ⊕ · Andriani Asproudi¹ ⊕ · Maria Carla Cravero¹ ⊕ · Silvia Motta¹ ⊕ · Loretta Panero¹ ⊕ · Ricardo Lopez² ⊕

Received: 27 November 2020 / Revised: 23 March 2021 / Accepted: 27 March 2021 / Published online: 16 April 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021



Interpretazione sensoriale del rotundone

Piano sperimentale: Verduno Pelaverga (fattoriale 2×2×2)

+O₂Conservazione a 20 °C -O₂

+O₂ Conservazione a 4 °C _{-O₂}

+502	A +O ₂ +SO ₂ 6 bottiglie 1 con sensore O ₂	C -O ₂ +SO ₂ 6 bottiglie 1 con sensore O ₂	+502	E +O ₂ +SO ₂ 6 bottiglie 1 con sensore O ₂	G -O ₂ +SO ₂ 6 bottiglie 1 con sensore O ₂
-502	B +O ₂ -SO ₂ 6 bottiglie 1 con sensore O ₂	D -O ₂ -SO ₂ 6 bottiglie 1 con sensore O ₂	-502	F +O ₂ -SO ₂ 6 bottiglie 1 con sensore O ₂	H -O2 -SO2 6 bottiglie 1 con sensore O2

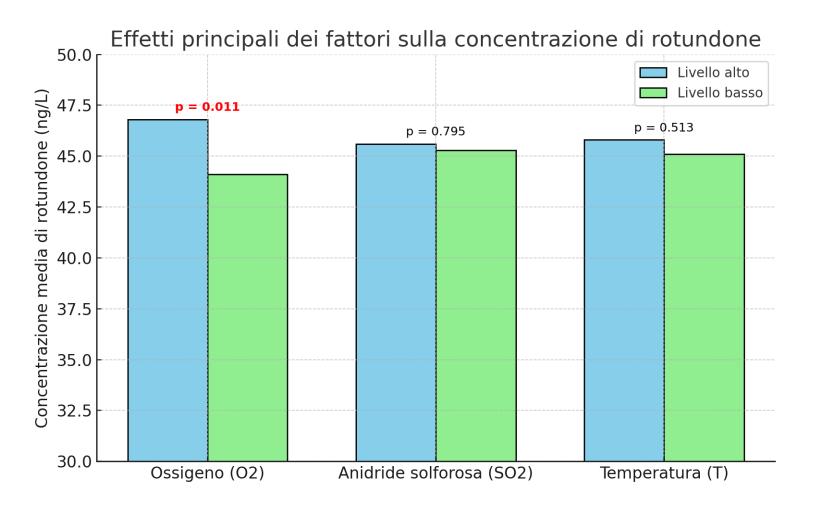
Fattori: O_2 (+4 mg L^{-1} vs 0 mg L^{-1}) × SO_2 (+90 mg L^{-1} vs 0 mg L^{-1}) × Temperatura (20 °C vs 4 °C). Colori: rosso = $+O_2$ + SO_2 | azzurro = $-O_2$ + SO_2 | verde = $+O_2$ - SO_2 | giallo = $-O_2$ - SO_2 . Ogni condizione: 6 bottiglie totali; 1 bottiglia con sensore O_2 .

3 mm

Table 2 The effect of each factor (Oxigen, Sulfur dioxide and temperature) on wine sensory attributes after 3 months of bottling, ANOVA results. Different letters within each row denote significant differences between the wines at p < 0.05)

Attribute	Main effects											
	Oxygen (O ₂)			Sulfur dioxyde (SO ₂)			Temperature (T)					
	Low O ₂	High O ₂	F	Sig	Low SO ₂	High SO ₂	F	Sig	Low T	high T	F	Sig
Rose	36,7	33,3	1,452	ns	36,7	33,3	1,488	ns	36,3	33,8	0,785	ПS
Violet	32,4	32,7	0,026	IIS	32,8	32,3	0,040	IIS	35,0a	30,1b	5,149	•
Black pepper	35,8	32,7	1,620	ns	33,8	34,7	0,131	ns	35,6	32,8	1,295	ПS
Nutmeg	27,9	25,3	1,850	ns	26,3	26,8	0,086	PS-	27,9	25,2	2,032	ns
Cloves	24,7	24,2	0,078	ms	24,8	24,1	0,143	ns	26,8a	22,1b	5,930	
Raspberry	35,0	33,2	0,730	ms	38,3a	29,9Ь	15,957	••	37,9a	30,3b	13,011	**
Blackberry	29,2	29,4	0,003	ns	33,1a	25,5b	8,463	•	33,0a	25,6b	8,233	•
Cherry	34,8	33,3	0,587	ms	37,4a	30,8b	6,162	•	37,1	31,1	5,016	ns
Dried plums	28,6	26,0	1,560	ms	28,4	26,2	1,078	ns	29,1	25,5	2,891	ns
Jam	28,7	26,3	0,914	ms	29,0	25,9	1,694	ns	28,7	26,2	1,125	IIS
Almond	17,3	16,6	0,128	ns	17,4	16,5	0,211	ns	18,0	15,9	1,273	ns
Dry herbaceous	26,5	23,2	2,587	ns	25,1	24,5	0,090	ns	25,9	23,7	1,146	ns
Balsamic	20,5	19,0	0,418	ms	20,4	19,0	0,341	IIS	19,1	20,3	0,245	ns

^{*, **, ***} and ns: significant at p < 0.05, 0.01 and 0.001 and not significant (Sig.), respectively



Conclusioni

Unicità aromatica e identità varietale

Il Verduno Pelaverga si conferma un vitigno raro, con un profilo olfattivo riconoscibile e distintivo che ne rafforza l'autenticità e il legame con il territorio.

Strumenti scientifici per la valorizzazione

La ricerca ha identificato i composti chiave e definito parametri analitici che ne supportano la tutela, la promozione e la comunicazione a livello enologico.

Nuove prospettive e collaborazioni

Si aprono opportunità di ricerca sul ruolo del vitigno in un contesto di cambiamento climatico e sostenibilità, insieme a collaborazioni internazionali che ne accrescono visibilità e competitività.

VERDUNO, 9 SETTEMBRE 2025

30 anni di Verduno Pelaverga Doc

Una piccola Doc nei suoi trent'anni di denominazione di origine

Progetto finanziato con lo Sviluppo Rurale Piemonte 2023 – 2027 Intervento SRG10 Promozione dei prodotti di qualità regione.piemonte.it/svilupporurale

Si invita al consumo responsabile delle bevande alcoliche

PSP 23-27 Piemonte, Intervento SRG10, nº domanda 20231092014

Progetto finanziato con lo Sviluppo Rurale Piemonte 2023 – 2027 Intervento SRG10 Promozione dei prodotti di qualità regione.piemonte.it/svilupporurale

Si invita al consumo responsabile delle bevande alcoliche

PSP 23-27 Piemonte, Intervento SRG10, nº domanda 20231092014

